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Abstract

This document gives an introduction to genetic algorithms with a short detour to
their history, describing how evolution works in nature and how genetic algorithms
try to mimic this functionality. No mathematical background nor proof is given in
this document. Further, it describes the development of a simple genetic algorithm
in C++, providing excerpts of source code demonstrating the basic functionality.
Afterwards, a more flexible approach based on the simple genetic algorithm is shown,
including a description of its design and development.

Subsequently, a very basic introduction to the traveling salesman problem and
the complexity class of np-complete is given. Follwing that, steps necessary to
customise the genetic algorithm for the traveling salesman problem are described in
detail, including the necessary problem encoding and a basic coverage on elitism.
The developed algorithm is tested and the approximated results are evaluated.

To conclude this work the parallelisation using the OpenMP API [2] is described,
as well as some problems typical to parallelisation. This document does not offer an
introduction nor tutorial to the OpenMP API. Afterwards a performance comparison
of the genetic algorithm running in sequential and parallel will be disclosed, drawing
conclusions based upon the results.

This work was done within the scope of the Hochschule für Technik und

Wirtschaft Aalen, Germany, as a mandatory project work over the course
of the 6th semester.
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Chapter 1

Introduction

1.1 Motivation

While sorting problems are solved to near optimality, search problems still remain
challenging for todays computers. Simply speaking, a search algorithm takes a given
problem as input and returns a solution to the problem as output.

There are several distinct approaches to solve a search problem in an efficient
manner. While there are search algorithms that solve specific search problems with
an optimal time and space efficiency, there is no general search algorithm that solves
all search problems with optimal efficiency. On top of that, there exist quite a few
problems which cannot be solved within a reasonable time frame at all. These
problems are called NP-complete1. Problem-specific information is often needed to
solve a search problem in an efficient manner, too. This is not desirable.

Genetic algorithms (GAs) are one approach to this problem. Belonging to evo-
lutionary computation, they offer some advantages such as being independent of
problem-specific information while maintaining good performance or an inherent
resistance to local optimum traps.

1.2 Outline

Beginning with chapter 2, this work provides a basic introduction to genetic algo-
rithms. Though it does neither provide the mathematical background nor proof for
the basics covered – other literature is recommended for this purpose – it spotlights
the special features genetic algorithms offer. Relying on the work done by Gold-
berg [1], a first simple genetic algorithm (SGA) was developed in C++ which will
be showcased, followed by a description of the approach taken to enhance this first
attempt with more flexibility. Last, a performance evaluation and comparison is
done.

Chapter 3 focuses on the Traveling Salesman Problem. Starting with a short
introduction to the problem, the chapter elaborates on which steps were taken to
adjust the genetic algorithm to approximate an optimal tour. The algorithm and
its performance are then evaluated.

1For an introduction to NP-complete see section 3.1.1
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Going on, chapter 4 brings attention to one of the most notable features of a
genetic algorithm, namely its intrinsic parallelism, and how this knowledge was used
to optimise the performance of the algorithm utilising the OpenMP API [2].

Last but not least a conclusion is drawn, summarizing the insights of this work
in chapter 5.

1.3 Goal of this work

The main goal of this work was to get a grip on several topics: First off, getting a
basic understanding of parallel programming. As this work does not further first-
hand threaded programming experience, using OpenMP provides an easy way to
gain a basic understanding of parallel programming issues like racing conditions,
mutual exclusion as well as synchronisation. Concepts independent of programming
language or platform.

Second, I had the opportunity to gain some firsthand experience on genetic
algorithms. The idea behind them, how they work, what the critical areas are
performance-wise and last but not least how to utilise them to solve search problems.

Third, intensifying my C++ skills and applying some best practices [3]. Gaining
experience at designing and modeling a software architecture which is flexible and
modular, while still keeping an eye on performance.

1.4 Approach

Based on the pascal implementation of a simple genetic algorithm by Goldberg [1],
a C++ port utilising object-orientation was developed. First tests were conducted
using simple search problems.

Afterwards, the simple genetic algorithm was refactored into an enhanced genetic
algorithm (EGA) to be more modular by design, allowing for extension so adaption
to a broader array of search problems would be easy. The same simple search
problems used in the previous iterations were used to compare the performance of
the modular approach to the simpler one. Optimisations were conducted based on
this. After this was done, appropriate extensions to approximate the TSP were
written and tested as well. These tests included verification if an optimal tour was
found and evaluation of the performance cost to do so.

The last step was to parallelise the EGA by using OpenMP pragmas and to
evaluate, once again, its performance.
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Chapter 2

Genetic algorithms

This chapter provides a basic coverage on genetic algorithms, describing their func-
tionality in section 2.1. Following that, a simple genetic algorithm (SGA) was
developed which will be elaborated in section 2.2. The SGA was further enhanced
to offer more flexibility. This enhanced GA is called EGA and described in section
2.3. Concluding, the SGA and EGA are evaluated and compared, especially their
performance, in section 2.4.

2.1 Fundamentals

Genetic algorithms are based on nature and the theory of evolution, therefore be-
longing to the field of evolutionary computing [8]. Evolutionary computing itself
again relies on the Darwinian principles, such as natural selection or survival of the
fittest.

The principles of genetic algorithms are quite simple yet powerful. Using a few
basic principles – namely reproduction, a fitness function and selection – an encoded
problem is solved over the course of several generations of a population composed
of individual solutions to the problem. But before we go into detail, let’s cover
the historical background from which this approach emerged. Following that, the
functionality will be elaborated first by theory, then by example.

2.1.1 Historical Background

At first, three interpretations of evolutionary computing emerged:

The use of Darwinian principles for automated problem solving origi-
nated in the fifties. It was not until the sixties that three distinct inter-
pretations of this idea started to be developed in three different places.

Evolutionary programming was introduced by Lawrence J. Fogel in the
USA, while John Henry Holland called his method a genetic algorithm.
In Germany Ingo Rechenberg and Hans-Paul Schwefel introduced evo-
lution strategies. These areas developed separately for about 15 years.
From the early nineties on they are unified as different representatives
(“dialects”) of one technology, called evolutionary computing. (see [8])
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This indicates that genetic algorithms are just one way of translating the princi-
ples of nature into artificial systems, known as evolutionary computing. Nevertheless
we shall focus on this aspect of evolutionary computing.

Initially biologists and geneticists startet experimenting with the translation of
natural processes into artificial systems in order to further understand the ways of
nature, specifically to answer the question how evolution works. The first work was
done in 1954 by Nils Aall Barricelli. These early approaches already contained the
essentials of the emerging distinct interpretations mentioned before.

Genetic algorithms first became popular when John Henry Holland released his
publication1 Adaptation in Natural and Artificial Systems in 1975, introducing Hol-
land’s schema theorem [9] which is widely viewed to explain the power of genetic
algorithms.

Later in 1989, Goldberg released a book on genetic algorithms with the title
Genetic algorithms in Search, Opimization & Machine Learning [1] which can be
viewed as a summary of the research done on genetic algorithms up to then, enhanced
with Goldberg’s own research.

According to Goldberg “the goals of [Holland’s] research [has] been twofold: (1)
to abstract and rigorously explain the adaptive processes of natural systems, and
(2) to design artifical systems software that retains the important mechanisms of
natural systems.” [1]

2.1.2 Functionality

As mentionend in section 2.1.1, genetic algorithms are based on the important mech-
anisms of natural systems. But what exactly are the important mechanisms?

If one takes a look at the creatures nature created, one will notice nature pro-
duced very robust creatures in the course of evolution. Creatures hardly “crash”
while processing something like computers do. Goldberg describes robustness as
“the balance between efficiency and efficacy necessary for survival in many different
environments.” [1] Computer systems, especially operating systems but regular soft-
ware as well, are also operated in a widely different landscape of hard- and software
environments which often cause problems. Such programs could greatly benefit from
improved robustness.

The variety of environments attaches importance to one specific feature: adapt-
ability. Higher adaptability means creatures or systems can perform their duty
longer and better, bringing more flexibility to the table. [1] Eventually, software
could grow into something new by adapting to changes. Change is one ever-present
constant, else there would be no need for new software in the same old branches
over and over again. One ultimate system would be enough to satisfy the needs of
the current and all coming generations. But since this is not the case, adaptability
is key to the longevity and usefulness of software.

To understand how a genetic algorithm works we will take a look at its prototype:
nature.

1Which originated from studies of cellular automata, conducted by Holland and his students at
the University of Michigan.
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How evolution works

The following example was taken from Jean-Philippe Rennard [4] and slightly mod-
ified for the purpose of clarity:

Imagine the prehistoric ancestor of whales, the basilosaraus. It was about
15 meters long and weighted 5 tons. It had a quasi-independent head and
posterior paws. He moved using undulatory movements and hunted small
prey.

Figure 2.1: Reconstruction of a basilosaurus. Image by Pavel Riha (Wikipedia [7])

Movement in a viscous element like water is very hard and requires
big effort. To hunt, the basilosarus must have had enough energy to
move, control its trajectory and snatch its prey. The anterior members
of basilosaurus were not really adapted to swimming. To adapt them, a
double phenomenon must occur: the shortening of the “arm” with the
locking of the elbow articulation and the extension of the fingers which
will constitute the base structure of the flipper.

Through time, subjects appeared with longer fingers and shorter arms.
They could move faster and more precisely than before, and therefore,
live longer and have many descendants.

Meanwhile, other improvements occurred concerning the general aerody-
namic like the integration of the head to the body, improvement of the
profile, strengthening of the caudal fin. . . finally producing a subject per-
fectly adapted to the constraints of an aqueous environment. (see [4])

This is the basic principle behind genetic algorithms: The higher the fitness of
a basilosaurus, the longer it will live. Whereas higher adaptability helps to react to
new circumentstances more rapidly, increasing its fitness. A basilosarus with higher
fitness is more likely to attract a partner, which leads to descendants that will carry
on his genes. Eventually the improved basilosaurus genes with short arms and long
fingers will prevail. But adaption can only take place between two generations.
Existing basilosaurus won’t be able to grow short arms and long fingers within their
lifetime, but their offspring may be born possesing those features.
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Three basic operators

Every creature has its blueprint stored in the form of DNA in its body cells. DNA
consists of strings which encode short groups of linked features2. Let’s consider such
a DNA string as a binary string, whereas the position of a binary digit indicates
its meaning (e.g. paw or fingers) and the value expresses which kind of state it
possesses (e.g. 0 = short, 1 = long). By combining those properties, we are able to
express features like short paw or long finger.

In order to survive the basilosaurus must reproduce itself by mating with a
partner. In this process an existing basilosaurus couple procreate new basilosaurus’,
their offspring. The offspring is composed by a mix of the features of their mother
and their father or by completely copying the identical features of one parent3. In
biology, the process of mixing the DNA strings of the parents is called crossover.
Crossover allows for certain basilosaurus features – or groups of features – to be
combined in a possibly new way which might be more useful in the present or future
environment.

However, this does not allow the population of basilosaurus as a whole to develop
new features since it’s only a recombination of existing features. The development
of new features is taken care of by mutation. In our binary string example, this
would be achieved by randomly flipping a binary digit.

From this example, we can extract the three following basic operators:

• reproduction

• crossover

• mutation

These three operators constitute the essential functionality of any genetic algo-
rithm.

A GA by example

So much for theory, let’s do a small simulation “by hand”. We want to find a
maximum for the function f(x) = x2 with 0 ≤ x ≤ 15.

To get started we will need to encode x in an appropriate way. A binary string
representing a binary number will suffice in this case, but there are other problems
which necessitate other encodings (we will get back to this in chapter 3). The
binary number starts with the most significant bit and has a maximum of four
digits. Consider the following population, containing four individual chromosomes
(short individuals) and their corresponding fitness rounded naturally:

A 1 1 0 0 fitness: 0.8 decoded x value: 12
B 1 0 1 0 fitness: 0.6 decoded x value: 10
C 0 0 1 1 fitness: 0.2 decoded x value: 3
D 0 0 0 0 fitness: 0.0 decoded x value: 0
================
Generation 1 sum: 1.6

2Goldberg calls them building blocks in [1].
3Though it is unlikely this will happen in nature.
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The fitness function for this example is pretty simple. It’s calculated by decoding
the binary number into a decimal number k, which is used in the following formula:

fitness =
k

max(x)
=

k

15

Of course, such a function would be absurd since the dividend is the maximum
of the function which we’re looking for, rendering the search for it absurd. But after
all, this demonstration should be as simple as possible.

Going on, to generate the next population the individuals of our current genera-
tion have to reproduce: Two individuals will be randomly chosen as mating partners
– though the random selection is influenced by the fitness value: Individuals with
higher fitness should possess a higher probability of being selected.

We select (admittedly not very randomly) individual A and B to mate. To create
the offspring4, we will need to determine a random crossover site, let’s say we rolled
xsite = 2.

A 1 1 x 0 0
B 1 0 x 1 0

Beginning with child A’, all the bits of parent A are transfered to the first child
until the crossover site is met. Then the remaining bits starting from the crossover
site of parent B are transfered to the child. Likewise, but vice versa, we transfer all
bits from parent B until the xsite to child B’, then transfer all bits beginning at the
xsite from parent A to B’.

Incidentally, after crossing a mutation happens in child B’, randomly flipping the
bit at position 4. The offspring A’ and B’ looks like this:

A’ 1 1 1 0
B’ 1 0 0 1 without mutation: 1 0 0 0

The next children are produced using B and C as parents. After this, we have a
population of four individuals, meaning no further reproduction is necessary.

A’ 1 1 1 0 fitness: 0.9 decoded: 14
B’ 1 0 0 1 fitness: 0.6 decoded: 9
C’ 1 0 1 1 fitness: 0.7 decoded: 11
D’ 0 0 1 0 fitness: 0.1 decoded: 2
================
Generation 2 sum: 2.3

As can be seen, individual D completely dropped out since it was not selected
for mating because of its low fitness value. Also, the best fitness increased from 0.8
to 0.9, as well as the sum of fitness which increased from 1.2 to 2.3.

Altogether, the new generation is superior to the old. There is an obvious im-
provement in the population as well as in single individuals. If we were to continue
this example the maximum would be eventually found after a certain number of
generations.

4We always create two children by default.

9



2.1.3 The Lingo

Since evolutionary computing is based on nature or, to be more specific, on biol-
ogy it borrows some terms from genetics. To conclude the introduction to genetic
algorithms we shall take a look at the lingo of genetics.

The strings storing features5 are called chromosomes like their biological coun-
terparts. Each chromosome is composed of genes, whereas every gene contains two
properties: Its value called allele and its position called locus. Remember, the po-
sition – or locus – encodes which feature the gene stands for (in other words its
meaning) while the allele itself expresses how the feature might look like.

A single chromosome could be described as a particular proposal for solution to
a given problem. Each chromosome implicitly posseses a fitness value, indicating
how good the solution is. Goldberg further adopts the terms genotype and phe-
notype from biology. A genotype is a complete set of chromosomes describing the
“construction and operation of some organism. In artifical genetic systems the to-
tal package of strings is called a structure [. . . ]”. The phenotype represents “the
organism formed by the interaction of the [genotype] with its environment [. . . ]. In
artifical genetic systems, the structures decode to form a particular parameter set,
solution alternative, or point (in the solution space)”. [1] In other words, he dis-
criminates between chromosomes (strings or blocks of features), genotypes (solution
sets using schemata to describe possible alleles) and phenotypes (actual solution sets
using hard-coded alleles).

In this work, I did not find any use in discriminating between those three terms.
When I use the term chromosome I mean the actual solutions using hard-coded
alleles.

In genetics, a genome is a set of chromosomes (simply speaking). Therefore I
chose this term to represent my set of chromosomes. A population, in addition, con-
tains a genome. One could also label the genome as the genetic pool of a population.

2.2 A simple genetic algorithm

The implementation of a simple genetic algorithm shown in figure 2.2 is based on
the pascal implementation of Goldberg [1]. It was adapted to object-orientation and
converted to C++.

As can be seen6, the three main operators – reproduction, crossover and muta-
tion – reside within the GeneticAlgorithm-interface. Although reproduction is not
present at first sight, one can guess it’s hidden somehow within raiseGeneration().

Basically, raiseGeneration() “wraps” generation(), which implements the
functionality of reproduction, by calling it and doing some statistics before and
after the call. See listing 2.1 for the actual implementation in code.

5Or groups of features called building blocks by Goldberg [1].
6More or less obviously.
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Listing 2.1: Implementation of raiseGeneration()

1 void SimpleGeneticAlgorithm:: raiseGeneration()

2 {

3 new_pop ->incGeneration(); // increment generation

4 // counter by 1

5 generation(); // generate new generation

6 // by reproduction

7 // Statistics

8 stats.calcStatistics(*new_pop );

9 stats.report( new_pop ->getGeneration() );

10

11 *old_pop = *new_pop; // copy content of of new_pop

12 // and store in old_pop

13 }

«interface»

GeneticAlgorithm

+ raiseGeneration()

+ crossover(*p1 : Individual, *p2 : Individual, *c1 : Individual, *c2 : Individual) : int

+ mutation(alleleval : Allele) : Allele

Statistics

- nCross : int

- nMutation : int

- avgFitness : double

- maxFitness : double

- minFitness : double

- sumFitness : double

+ initReport()

+ report(gen : int)

+ calcStatistics(const &pop : Population)

+ printChrom(chrom : Allele)

+ incCross()

+ incMutation()

-*genome

SimpleGeneticAlgorithm

- *objective : Objective

- stats : Statistics

- *old_pop : Population

- *new_pop : Population

- probCrossover : float

- probMutation : float

+ SimpleGeneticAlgorithm(*obj : Objective)

+ raiseGeneration()

+ crossover(*parent1 : Individual, *parent2 : Individual, *child1 : Individual, *child2 : Individual) : int

+ mutation(alleleval : Allele) : Allele

+ initData() : int*

+ getGeneration() : int

+ getMaxGeneration() : int

0..1

-*old_pop -*new_pop

«interface»

Objective

+ decode(chrom[] : const Allele, length : int) : double

+ calcFitness(x : double, length : int) : double

«enum»

Allele

ZERO

ONE

PowerOfTwo PowerOfTen

1

-stats-*objective

Population

- gen : int

- maxGen : int

- maxSize : int

- maxChromLength : int

- *genome : Individual

+ Population(size : int, length : int, maxGeneration : int, const &obj : Objective)

+ select(sumFitness : double) : Individual*

+ incGeneration()

«datatype»

Individual

Figure 2.2: UML class diagram of the adapted simple genetic algorithm

Selection is done using the principle of a weighted roulette wheel7: Think of
a roulette wheel containing slots. Each individual gets a share of connected slots
which is in relation to its fitness: Higher fitness means a bigger share of slots for the
individual, lower fitness means a smaller share of slots.

7Also known as fitness proportionate selection.
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In order to select an individual we spin the wheel and see which slot wins. From
the winner slot we can determine the corresponding individual.

individual with highest �tness

has largest share of slots

50%

25%

12,5%
12,5%

A

B

C
D

single slot

selected

individual

Figure 2.3: Illustration of the roulette wheel selection

Since there is a lot of randomness involved in a genetic algorithm it became
apparent that a robust and authentic random number generator is key to finding
optimal solutions. Looking into a recommendation of Professor Dr. Christoph Karg,
I finally implemented “ran3” from Numerical recipes in C 8 [5].

As only one instance of the RNG is necessary the singleton pattern [6] was used
to ensure only one instance will be present at any time. When the genetic algorithm
was parallelised, the singleton pattern was adjusted in that every thread received its
own unique instance of the RNG. Figure 2.4 illustrates the RNG class. Both, the
SGA and EGA, use this implementation, so they share it’s code base.

A genetic algorithm, implemented by SimpleGeneticAlgorithm in this case, is
composed by two Population-objects: old_pop and new_pop. As a matter of prin-
ciple, a genetic algorithm only requires one population to work with. But working
with two makes it easier, because while generating the new generation the GA still
requires access to the individuals of the old generation to chose parents from. At this
point a temporary copy of the current generation is necessary so newly generated
children cannot be selected as parent for their own generation.

8See page 283, second edition.
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-uniqueInstance

RNG

- uniqueInstance : RNG

- next : int

- nextp : int

- ma[] : long

- mj : long

- mk : long

- i : int

- ii : int

- k : int

+ RNG(*dum : long)

+ random() : float

+ flip(prob : float) : bool

+ range(max : int) : int

+ range(min : int, max : int)

+ getInstance() : RNG

Figure 2.4: UML class diagram of the random number generator “ran3”

For simplicities sake, I chose to compose my GA of two Populations: The old
one, representing the current generation, and a new one, to store the chromosomes
of the next generation while it’s being generated – overriding only the chromosomes
of its previous population.

After reproduction is done, the two generations are swapped, so the latest gen-
eration always resides within old_pop.

An individual is represented by the structure shown in listing 2.2:

Listing 2.2: Member variables of an individual structure

1 // Use enum so we don’t depend on specific values

2 enum Allele {

3 ZERO ,

4 ONE

5 };

6

7 struct Individual {

8 int length; // length of chromosome array

9 double x; // decoded value

10 double fitness;

11 int xsite;

12 Allele *chromosome; // number in binary format

13 // stored in Allele array

14 // ...

Lastly, the Statistics-class is used to keep track of the number of crossover
and mutation operations done, as well as the best, worst and average fitness of the
population. It also provides some report functions to print the statistics to the
console while the GA is running.
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2.2.1 Pros and cons

The major advantage of the simple approach is its speed. As we will see later at the
performance evaluation, the simple non-extensible approach is by a good deal faster
than the more modular approach.

A huge drawback, on the other hand, is its flexibility. Although adding new
objectives was made easy by programming against an interface, it was forgotten to
do the same for individuals. Inheriting from individual would not be a good idea,
since it’s not supposed to be inherited of and therefore its methods are non-virtual9.
Apparently, adding a new encoding to this kind of design would not be as easy as
it could be.

But let’s say we somehow added a new type of individual to store the new
encoding. It would be only then that we discover another problem with the design:
Placing the crossover and mutation operator in the genetic algorithm itself may seem
smart at first, but sacrifices easy extensibility. Being done adding the new encoding,
how should the GA be able to handle it? It certainly does know how to cross and
mutate binary encoded individuals, but this is done in a completely different way
for permuation encoded individuals.

The select()-method didn’t seem to belong to the Population-class as well.
Also, it wasn’t extensible itself, but there are by far more selection schemes out
there than just roulette wheel.

As this example demonstrates, easy extensibility certainly is not one of the fea-
tures at which the SGA will shine.

2.3 Modularising the genetic algorithm

The next step was to change the first approach (see section 2.2) and turn it into
something more extensible, to enhance it. Extensive refactoring was necessary to
achieve this. Most of the limitations of the first approach became apparent only after
its implementation process began, thus many ideas that were incorporated into the
enhanced version (called EGA, meaning enhanced genetic algorithm) emerged while
and after the implemention of the SGA.

A note on pointers

All pointers used in the enhanced genetic algorithm UML diagrams actually are
shared pointers of the type tr1::shared_ptr<typename T>. It was chosen to de-
pict them as simple pointers in the UML diagrams since this did not interfere with
communicating the concepts while helping to avoid bloating the diagrams with un-
neccessary long type names.

2.3.1 Thoughts on performance

Performance was another consideration during the refactoring process. Since a ge-
netic algorithm spends most of its time executing the reproduction operator, special
care had to be applied while refactoring it.

9See Scott Meyers’ Effective C++ [3] – Item 36: Never redefine an inherited non-virtual function.
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Instancing a new population for every generation is a waste of computational
space and time – especially of the latter. Think about all the constructors which
are needed to be called when instancing a new population from scratch. If it has a
size of n, then as many individual-constructors would be called.

In the enhanced approach existing individuals are reused by changing only their
referenced data: Their chromosomes will be overridden by the crossover-operator,
their fitness will be recalculated, and both, the cross site and fitness, will be stored
in a member variable.

Listing 2.3: Refactored implementation of raiseGeneration()

1 void EnhancedGeneticAlgorithm:: raiseGeneration()

2 {

3 oldPopulation ->reproduce(

4 crossoverProbability ,

5 mutationProbability ,

6 newPopulation ,

7 statistics);

8

9 swap(oldPopulation , newPopulation);

10

11 oldPopulation ->incGeneration(); // increment generation

12 newPopulation ->incGeneration(); // counter by 1 for both

13

14 // Statistics

15 statistics.compute (* oldPopulation);

16 statistics.report( oldPopulation ->getGeneration() );

17 }

Additionally, safe downcasting from the interface type Individual to the ac-
tual derived type was used in the corresponding cross-method at the beginning
(e.g., downcasting an object of type Individual to type BinaryEncoded in order
to get access to some getters and setters only objects of class BinaryEncoded offer).
Since there are some performance implications using dynamic_cast<T>(expression)
according to Item 27 of Scott Meyers’ Effective C++ [3], this was later on changed.

Derived type specific methods were added to the interface to get rid of the need
for safe downcasting. An empty implementation was written for those methods
which did not make any sense in a specific derived type. This is not the best design,
but as most of the computational time is spend in the cross-method this was a
necessary step (Pareto Principle: 80% of the computational time is spend executing
20% of the code [12] – the cross-method is the biggest part of those 20% in this
program).

So, as can be seen in figure 2.4, so-called stub methods were added to the
Individual-interface.
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Listing 2.4: Method stubs in the interface of Individual

1 class Individual

2 {

3 public:

4 // other method declarations...

5

6 // Generally usable getters and setters

7 virtual void setCrossSite(int xsite) = 0;

8 virtual double getFitness() const = 0;

9 virtual void setFitness(double fitness) = 0;

10 virtual int getLength() const = 0;

11

12 // The following methods are stubs used to avoid the

13 // performance cost of dynamic_cast <T >().

14 // needed by:

15 virtual bool getGene(int pos) // BinaryEncoded

16 const = 0;

17 virtual void setGene(int pos , // BinaryEncoded

18 bool allele) = 0;

19 virtual int getCityId(int pos) // PermutationEncoded

20 const = 0;

21 virtual void setCityId(int pos , // PermutationEncoded

22 int cityId) = 0;

23 virtual double getDistance() // Statistics

24 const = 0;

25 virtual void setDistance( // FitnessFunction

26 double distance ) = 0;

27 };

2.3.2 Decoupling encodings and selection schemes

As pointed out by the example in section 2.2.1 it was rather hard to add new
encodings to the SGA. The first issue which should be solved by the EGA was to
allow for easy extensibility. To achieve this for encodings two steps were taken.

The first step was to code against an interface, named Individual, instead of
using an encoding implementation forthright. This way polymorphism and object
composition could do their magic.

The second step was to relocate the crossover and mutation methods into
the individuals themself. So each individual knew how to cross itself with another
partner of its own kind. That way we encapsulated the parts that are expected to
change from the genetic algorithm and combined it in a single place: The individual,
or to be more specific, classes implementing the individual interface.

Figure 2.5 already shows the individual interface declaring methods with the suf-
fix “Parallel”, like crossoverParallel(. . . ). Those functions are further explained
at a later time (see chapter 4). For now they can be ignored in good conscience.

To further the decoupling of the individuals from the population a factory was
utilised. The Population-object just tells the factory what kind of individual it
wants (using an enum) and the factory cares for the details.
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IndividualFactory

+ createIndividual(chromLength : int, enc : Encoding)

Population

- size : int

- encoding : Encoding

- generation : int

- chromLength : int

- maxGeneration : int

- genome : vector<Individual*>

- individualFactory : IndividualFactory

- *fitnessFunction : FitnessFunction

- *selectionScheme : SelectionScheme

+ Population(... : ...)

+ reproduce(pCross : float, pMutate : float, *newPop : Population, * : )

+ reproduceParallel(pCross : float, pMutate : float, *newPop : Population, * : )

+ swap(&other : Population)

«enum»

Encoding

BINARY

PERMUTATION

PermutationEncoded

- length : int

- fitness : double

- distance : double

- xsite : int

- tour : vector<int>

+ cross(... : )

+ mutate(... : )

«interface»

Individual

+ cross(p : Individual*, c1 : Individual*, c2 : Individual*, pCross : float, pMutate : float, &stats : Statistics)

+ crossParallel(p : Individual*, c1 : Individual*, c2 : Individual*, pCross : float, pMutate : float, &stats : Statistics)

+ mutate(pos : int, probability : float, &stats : Statistics)

+ mutateParallel(pos : int, probability : float, &stats : Statistics)

BinaryEncoded

- length : int

- fitness : double

- xsite : int

- chromosome : vector<bool>

+ cross(... : )

+ mutate(... : )

-individualFactory

-encoding

Figure 2.5: Population using an individual interface to allow for easy extensibility

-*selectionScheme

-*oldPopulation

-*newPopulation

-*fitnessFunction

«interface»

FitnessFunction

+ compute(ind : Individual*) : double

ExpectedValueModel

Population

- size : int

- encoding : Encoding

- generation : int

- chromLength : int

- maxGeneration : int

- genome : vector<Individual*>

- individualFactory : IndividualFactory

- *fitnessFunction : FitnessFunction

- *selectionScheme : SelectionScheme

+ Population(... : ...)

+ reproduce(pCross : float, pMutate : float, *newPop : Population, * : )

+ reproduceParallel(pCross : float, pMutate : float, *newPop : Population, * : )

+ swap(&other : Population)

PowerOfTen TSPPowerOfTwo

EnhancedGeneticAlgorithm

- mode : Mode

- crossoverProbability : float

- mutationProbability : float

- statistics : Statistics

- *oldPopulation : Population

- *newPopulation : Population

+ EnhancedGeneticAlgorithm(... : ...)

+ raiseGeneration()

+ run()

+ getGeneration() : int

+ getMaxGeneration() : int

RouletteWheel

«interface»

SelectionScheme

+ select(&pop : const Population, &stats : const Statistics) : int

«interface»

GeneticAlgorithm

+ raiseGeneration()

+ run()

+ getGeneration() : int

+ getMaxGeneration() : int

Figure 2.6: Decoupled fitness function and selection scheme
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Next up was the decoupling of the selection scheme. Again, an interface was
used to accomplish extensibility utilsing the power of polymorphism and object
composition.

2.3.3 The cost of modularity

All this changes did not come without a cost. The complexity in contrast to the
SGA perceptibly increased with the EGA. Instancing an object of the EGA involves
a lot of object composition. To illustrate this, a sequence diagram was created that
depicts the process of object instantiation (see figure 2.7).

A factory was employed to reduce the complexity of object creation. To get a
shared pointer to an EGA, one has to to create a GAFactory, call the createGA(. . . )-
method and pass it some enumerated options like which type of problem should be
solved, which selection scheme should be used and the likes. The factory will then
compose the genetic algorithm in the fashion the user wants.

2.4 Performance evaluation

Both genetic algorithms were run with the objective to maximise the function

f(x) =

(

x

coeff

)10

where coeff has been chosen to normalise x. This function is rather trivial, so
the maximum is found relatively fast. Nevertheless, increasing the population size
to a meaningless high amount still has its impact on performance, therefore allowing
us to draw conclusions.

The following base parameters were used in every test run10:
Crossover probability: 0.6; Mutation probability: 0.03

Generations Population SGA EGA sequential
size time in seconds time in seconds

100 1,000 0.175 s 4.850 s
10,000 51.420 s 175.670 s

300 1,000 5.290 s 14.540 s
10,000 156.600 s 522.160 s

Table 2.1: Several testruns with variable population size and generation number

Generally said, the SGA is faster by a factor of 3 to 4 compared to the EGA.
For very small populations combined with a low generation number, its faster by an
astounding factor of 27 – which can be considered an outlier since higher generation
numbers like 300 relativise this. Additionally, it’s uncommon to work with such
small populations in the first place. It is assumed startup object construction is
responsible for this gap (see 2.3.3).

10No compiler optimisations have been used during performance evaluation.
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 : GAFactory

 : FitnessFunction

 : EnhancedGeneticAlgorithm

 : Individual

 : Statistics

 : SelectionScheme

 : Population

 : IndividualFactory

: return EGA

: Statistics()

: conreteObjective()

: concreteModel()

: Population(... : ...)

: return Population

: IndividualFactory()

: createIndividual()

: return createIndividuals

: EnhancedGeneticAlgorithm(... : ...)

Figure 2.7: The sequence of object creation
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Chapter 3

Approximating the Traveling
Salesman Problems

The Traveling Salesman Problem (TSP) and the corresponding modifications nec-
essary to approximate it using the enhanced genetic algorithm introduced in section
2.3 are covered in the following chapter.

At the beginning an introduction to the TSP in section 3.1 is given. Afterwards,
the customisations necessary to adapt the GA to the TSP are elaborated on in
section 3.2. Following, the approximation results of the EGA are evaluated in section
3.3. Finally, the performance is evaluated in section 3.4.

3.1 A short introduction to the Traveling Sales-

man Problem

A salesman has to visit several cities for business reasons. Since he is a witty
salesman, he wants to find an optimal route which allows him to travel to every
city exactly once. Also, he wants to minimise the traveled distance to the shortest
amount possible in addition to visiting every city exactly once. Fundamentally,
that’s the traveling salesman problem.

The traveling salesman problem is a np-complete combinatorial optimisation
problem. [10] What this means is described in the following section.

3.1.1 NP-complete

NP-complete is a complexity class of the computational complexity theory. NP is
the abbreviation of Nondeterministic Polynomial time, whereas the suffix complete
indicates it’s a subclass of NP. “NP may be equivalently defined as the set of deci-
sion problems that can be solved in polynomial time on a nondeterministic Turing
machine.” [11]

Simply put NP-complete problems could be described as “the set of all decision
problems whose solutions can be verified in polynomial time” [11].

For the time being, it is unknown if there exists an algorithm that solves any of
the NP-complete problems in an efficient manner. “Although any given solution to
such a problem can be verified quickly, there is no known efficient way to locate a
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solution in the first place; indeed, the most notable characteristic of NP-complete
problems is that no fast solution to them is known.” [11]

Since there is no efficient algorithm to solve them “[...] NP-complete problems
are often addressed by using approximation algorithms in practice.” [11] Genetic
algorithms being one of the random approaches to approximate an optimal tour.

3.1.2 As a graph

For this to work, the TSP was required to be modelled as a graph as described in
the following quote:

[The] TSP can be modelled as a graph: the graph’s vertices correspond
to cities and the graph’s edges correspond to connections between cities,
the length of an edge is the corresponding connection’s distance. A TSP
tour is now a Hamiltonian cycle in the graph, and an optimal TSP tour
is a shortest Hamiltonian cycle. (see [10])

Figure 3.1: Weighted complete graph of 4 nodes (from Wikipedia [7])

The TSP approximated in this work is only the symmetric version, meaning the
distance between cities is the same in both direction. Let’s take a look at figure 3.1
for example: The distance from city A to city B is 20 (not further defined) units.
For the symmetric TSP this means the distance from city B to city A will be exactly
the same, that is to say 20 units.

21



3.2 Customising the genetic algorithm

A new encoding type had to be added to the genetic algorithm since a binary
encoding would not fit the bill for the traveling salesman problem. The new encoding
needed to be able to unambigously identify cities of variable amount and to store a
tour in which every city would be visited exactly once.

3.2.1 Introducing permutation encoding

With permutation encoding every city is represented by a number. Each number is
unique and unchangeably bound to the city it represents. The tour is defined by the
ordering of the numbers. Say we’ve got eight cities identified by the numbers from
1 to 8. Then a possible tour could be looking like this:

5 3 4 6 7 8 2 1

Starting in city 5 the salesman travels to city 3, thereon to city 4, then to city
6, and so on. It is important to notice that every number must occur exactly once
to comprise of a valid tour.

3.2.2 Implementing permutation encoding

Simple things first, storing the city numbers in a std::vector<int> solves the
part of how the chromosome is saved. Whereas the ordering, as discussed before,
represents the tour.

Now for the more difficult part: The crossover operator. The initial approach
uses 3 steps.

1. Randomly select a crossover site xsite. Transfer all cities of parent1 to child1
and all cities from parent2 to child2 until the xsite is met.

2. Iterate over all cities in parent2 and mark those already transfered to child1.
Copy all unmarked cities into a temporary variable called temp1, preserving
their ordering. Do the same for child2 and parent1 storing all unmarked cities
in temp2.

3. Transfer all cities in temp1 to child1 beginning at the position following xsite
(xsite + 1). Do the same for temp2 and child2.

In contradiction to the implementation of the crossover operator for binary en-
coded individuals, mutation cannot be done simultaneously to crossover but has to
be done afterwards. This has a simple yet far-reaching reason: Mutation for per-
mutation encoded individuals means swapping two cities, thus it is modifying the
ordering of cities. If mutation was done simultaneously to crossover it could not
be guaranteed that the tour would not be invalidated by swapping a city that has
already been transfered by the crossover operator with one that has not yet been
transfered. The crossover operator could not tell apart cities it already transfered
from cities that still needed to be transfered anymore, invalidating the effort to keep
the tour valid by marking cities.

Consult figure 3.1 for the implementation in C++.
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Listing 3.1: PermutationEncoded crossover implementation

1 // Transfer cities until the xsite is met (step 1)

2 for(int i = 0; i <= xsite; i++) {

3 child1 ->setCityId(i, this ->tour[i]);

4 child2 ->setCityId(i, partner ->getCityId(i));

5 }

6

7 // Transfer the cities of the other parent to the child ,

8 // omitting already transfered cities since this would

9 // invalidate the tour (step 2)

10 if(xsite != (length - 1)) {

11 vector <int> remainderPartnerTour;

12 vector <int> remainderThisTour;

13

14 // Iterate over all cities of one crossover mate and mark

15 // cities which have already been transfered to the child

16 for(int k = 0; k < length; k++) {

17 bool isPartnerCityUsable = true;

18 bool isThisCityUsable = true;

19

20 for(int l = 0; l <= xsite; l++) {

21 if(partner ->getCityId(k) == child1 ->getCityId(l))

22 isPartnerCityUsable = false;

23 if(this ->tour[k] == child2 ->getCityId(l))

24 isThisCityUsable = false;

25 }

26

27 if(isPartnerCityUsable)

28 remainderPartnerTour.push_back(

29 partner ->getCityId(k) );

30 if(isThisCityUsable)

31 remainderThisTour.push_back(this ->tour[k]);

32 }

33

34 // Transfer remaining cities after the xsite

35 for(int j = xsite + 1, i = 0; j < length; j++, i++) {

36 child1 ->setCityId( j, remainderPartnerTour.at(i) );

37 child2 ->setCityId( j, remainderThisTour.at(i) );

38 }

39 }

40

41 // Randomly swap some cities. This has to happen after cross -

42 // over is done , else there’s a risk of invalidating the tour

43 for(int i = 0; i < length; i++) {

44 child1 ->mutate(i, probMutate , statistics);

45 child2 ->mutate(i, probMutate , statistics);

46 }
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3.2.3 Elitism

As it turned out, the genetic algorithm always got stuck at some point while trying
to approxiamte an optimal tour for a given route. This could not be resolved by
increasing the population size or the number of generations the GA ran. Also,
parameters like crossover probability and mutation probability didn’t change much.

The best fitness would always jump up and down, never going beyond a certain
threshold. To solve this elitism was introduced to the genetic algorithm. Simply
put, all elitism does is to ensure that a specified percentage of the best individuals
of the last population will be present in the next generation again. In other words
it preserves genetic data that has proven well. This way the best fitness cannot get
worse since the best solution to the problem cannot go extinct.

Listing 3.2: Elitism implemented in the reproduction method

1 // Elitism: Preserve the best x% of the population

2 quickSort(0, size - 1);

3 int elites = size * 0.05;

4 int xsite = 0;

5

6 #pragma omp parallel for

7 for(int i = 0; i < size; i = i + 2) {

8 spIndividual child1( newPopulation ->genome.at(i) );

9 spIndividual child2( newPopulation ->genome.at(i + 1) );

10

11 if(i < elites) {

12 // Preserve the best mates

13 spIndividual mate1( genome.at(i) );

14 spIndividual mate2( genome.at(i + 1) );

15

16 xsite = mate1 ->cross(

17 mate2 ,

18 child1 ,

19 child2 ,

20 0.0, // no crossover!

21 0.0, // no mutation !

22 statistics);

23 }

24 else {

25 // Randomly select two mates with roulette wheel

26 int m1 = selectionScheme ->select(*this , statistics);

27 int m2;

28 do { m2 = selectionScheme ->select(*this , statistics);

29 } while(m1 == m2);

30 spIndividual mate1( genome.at(m1) );

31 spIndividual mate2( genome.at(m2) );

32

33 xsite = mate1 ->cross( ... ); // lots of params...

34 }

35 // ...

36 }

24



Figure 3.2 illustrates how elitism was achieved. First the population needs to be
sorted by fitness so we know where to get the best x indiviuals of the population. It’s
sorted in descending order, meaning individuals with a higher fitness will reside at
the top, those with lower fitness at the bottom. This helps to reduce the sort effort a
little since the preserved “elite individuals” will be stored in the top positions of the
genome so they will already be sorted for the next pass. Then a specified percentage
– 5% in this case – of the indivials will be copied without any modification to their
chromosomes (crossover and mutation probabilities = 0.0 ensures this).

3.2.4 Partially matched crossover

David E. Goldberg introduced a partially matched crossover (PMX) in his publica-
tion [1]. For comparisons, PMX was added to the EGA. Figure 3.3 illustrates its
functionality. For further details concerning the functionality of PMX, please refer
to [1].

Listing 3.3: Partially matched crossover implementation

1 float nRandom = RNG:: getInstance()->random();

2 int lo_xsite , hi_xsite;

3

4 // Randomly determine if crossover shall happen

5 if(nRandom < probCross) {

6 // Difference of lo_xsite and hi_xsite should exceed 1

7 // so cities lie in between the borders

8 lo_xsite = RNG:: getInstance()->range(0, (length -1));

9 do{

10 hi_xsite = RNG:: getInstance()->range(0, (length -1));

11 } while( abs(lo_xsite - hi_xsite) <= 1 );

12

13 if(lo_xsite > hi_xsite ) {

14 int tmp = lo_xsite ;

15 lo_xsite = hi_xsite ;

16 hi_xsite = tmp;

17 }

18 }

19 else {

20 lo_xsite = (length - 1);

21 hi_xsite = 0;

22 }

23

24 // Transfer all cities to the children ...

25

26 // Here resides the main functionality of PMX!

27 for(int i = lo_xsite ; i <= hi_xsite; i++) {

28 child1 ->swap(i, child1 ->find_city(partner ->getCityId(i)));

29 child2 ->swap(i, child2 ->find_city(this ->getCityId(i)));

30 }

find_city(cityId) simply locates and returns the position of the specified city.
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3.2.5 Calculating the fitness

Last but not least we have to calculate the fitness, else the genetic algorithm would
not find an optimal tour since he would not know if the search is making any progress,
that is, if the tours are improving.

First it is necessary to calculate the distances traveled. This work exclusively
makes use of the EUC_2D coordinates provided by TSPLIB [13]. EUC_2D simply
means 2-dimensional euclidian coordinates. To calculate them an auxiliary method
was written which can be reviewed in figure 3.4.

Listing 3.4: Auxiliary method to calculate an euclidian distance

1 double Tsp:: calcEucDistance(

2 const spCity a,

3 const spCity b) const

4 {

5 double distance = pow( (b->x - a->x), 2)

6 + pow( (b->y - a->y), 2);

7 distance = sqrt(distance );

8

9 return distance ;

10 }

Which is just a shorthand for

distance =
√

(x2 − x1)2 + (y2 − y1)2

The distance computation of a given tour is as simple as iterating over all cities
and summing up the pairwise distances. See figure 3.5 for the implementation.

Listing 3.5: Computation of entire tour distance in the fitness function

1 double sumTraveledDistance = 0;

2

3 for(int i = 0; i < (ind ->getLength() - 1); i++) {

4 spCity a = (cities.find( ind ->getCityId(i) ))->second;

5 spCity b = (cities.find( ind ->getCityId(i + 1) ))->second;

6

7 sumTraveledDistance += calcEucDistance(a, b);

8 }

9

10 // return to the start of the tour

11 int lastCity = ind ->getLength() - 1;

12 spCity a = (cities.find( ind ->getCityId(0) ))->second;

13 spCity b = (cities.find( ind ->getCityId(lastCity ) ))->second;

14

15 sumTraveledDistance += calcEucDistance(a, b);

16 ind->setDistance(sumTraveledDistance);

17

18 double fitness =

19 (1 / sumTraveledDistance) * ind ->getLength() * 100;

20 // increase distance between better and worse chromosomes

21 fitness = pow(fitness , 2);

26



At the end it is important to return to the starting city. After all, the salesman
does not want to spend the night under a park bench simply because someone forgot
to plan for his trip home.

All that’s left to do now is to translate the traveled distance somehow into a
fitness value which increases as the distance decreases. The following approach was
chosen:

fitness =

(

1

sumTraveledDistance
· numOfCities · 100

)2

3.3 Evaluating the approximated results

Finally, tests could be run to see how well the EGA can approximate tours.

Note on used test data

The symmetric traveling salesman problem data from TSPLIB [13] was used as test
data for all tests executed in this work. Only data using the EUC_2D coordinates
were used.

3.3.1 The first test

The first test that ran was berlin52.tsp for which the EGA should find an optimal
tour visiting 52 locations in the german capital. Figure 3.2 depicts how close the
EGA using the initial implementation for the TSP and using Goldbergs PMX came.

Using a population of 30,000 over 500 generations the EGA found a route with
a total distance of 9234.78. In comparison, the optimal solution found by [13] has
a total distance of 7542. The result from the EGA is still a bit off from the optimal
distance. PMX even found a solution that’s a little bit closer with a total distance
of 9081.63. Probably a larger population would have been necessary to get better
results since the improvement seems to have gotten in a stalemate at generations
over 350.

The tests were run given an execution time of 20 minutes and 33 seconds utilising
a computer with 8 cores (2 Quad-core Intel(R) Xeon(R) E5335 @ 2.00 Ghz).

3.3.2 Another test

So the first test didn’t get to the optimum. For the second test eil51.tsp was
chosen as test data. Being a 51-city problem and therefore playing nearly in the
same league as berlin52.tsp from the first test, a bigger population of 50,000 was
chosen this time. Running over 500 generations again figure 3.3 shows the result of
the test run.

The shortest tour being at a distance of 426, the EGA came pretty close with
a distance of 486.74 for the initial approach and a distance of 481.28 for PMX.
Obviously, the two results are pretty close to each other and to the optimal tour as
well. Execution time was about 2 hours this time, which is a drastic increase from
the first test run.
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Figure 3.2: Approximation of an optimal tour with 52 locations in Berlin

Figure 3.3: Approximation of a 51-city problem

28



3.4 Performance evaluation

Several tests were conducted using st70.tsp – a 70-city problem by Smith/Thomp-
son based von EUC_2D-coordinates. Table 3.1 shows the results of tests run with the
following parameters, unless noted otherwise:

Crossover probability: 0.6

Mutation probability: 0.03

Generations: 100

Population EGA TSP EGA TSP with PMX
size time best fitness time best fitness

1,000 10.200 s 9.68 10.963 s 10.92
10,000 53.909 s 11.14 49.799 s 13.78

Mutation: 0.2

1,000 15.895 s 6.30 8.956 s 6.67
10,000 59.168 s 6.70 52.569 s 6.50

Crossover: 0.8

1,000 12.789 s 10.19 11.394 s 10.84
10,000 55.029 s 11.28 51.548 s 10.32

Table 3.1: Testruns with variable crossover and mutation probability using st70.tsp
as test data

Both, the TSP of this work as well as Goldbergs PMX, were run in parallel for
this performance evaluation.

Based on table 3.1 it can be said that the TSP crossover operator of this work
is pretty close to Goldbergs PMX operator performance-wise, with PMX achieving
a little bit higher fitness value most of the time and being a tad faster.

Increasing mutation from 3% to 20% did not improve the test run, quite the
opposite: As execution time rose significantly for the TSP operator of this work,
the fitness value sunk to the worst value of all tests for both. PMX did not suffer
that much from the increased mutation probability, in the case with a population
of 1,000 it was even faster then before which is probably an outlier.

Contrary, increasing the crossover probability had a rather small impact on per-
formance increasing execution time by a small amount while increasing the fitness
value a little bit, too, for the TSP of this work. On the other side it did worsen the
results of PMX remarkably.

To sum it up, PMX had its best results using the initial parameters while in-
creasing the crossover probability to 80% both increased the execution time and
fitness values of the TSP operator of this work. Generally, PMX seems to be the
marginally better operator.
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Chapter 4

Parallelising the genetic algorithm

With the genetic algorithm being practically finished at this point, the following
chapter covers the last task to be done: Parallelising the genetic algorithm. Begin-
ning in section 4.1 with some thoughts on the implications this step will cause, a
discussion about the critical areas follows afterwards. Going on, the act of parallelis-
ing itself is elaborated in section 4.2. Concluding, the hour of truth has arrived: The
parallelised genetic algorithm will be evaluated and compared against the sequential
version in section 4.3.

4.1 Preceding thoughts on the parallelisation

Looking over the code with parallelisation in mind one can find ample of opportu-
nities to parallelise even while looking at the code with only parallelising for-loops
in mind – which are by far the easiest and most obvious starting points to paralleli-
sation. But there is a cost to parallelisation in that it causes overhead: Communi-
cation has to be handled somehow between the branched off threads and the main
thread, possibly they even need to be synchronised with the main thread at some
point. Even more, when there are some variables involved the question arises how
to handle them in case of concurrent access: Do threads just concurrently read the
variables or is there a risk of concurrent write as well? In case of write access, is it
desirable to lock them or would that nullify the performance gain of parallelisation
in the first place?

Local copies of those variables would solve the problem of concurrent write access,
but is interconnected with the cost of allocating those local copies, thus expending
memory and a little bit of computational time – time we had in mind to decrease
by parallelising. Though its a small cost, it still is a cost and small costs can sum
up – it’s best to keep that in mind. Also, at the end of the parallelised code block
when the branched threads are done and terminated by the operating system, the
local copies of each branched thread needs to be reunited with the initial variable
again.

With all these considerations in mind it is not advisable to recklessly parallelise
every for-loop one encounters in the program code but to think about which ones
yield more benefits than they cost. Then, there is code that is sequential by nature
and cannot be parallelised at all.
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Leaning on the Pareto Principle [12] we can safely assume most of the code does
not even need to be parallelised since the overhead cost would nullify or even exceed
the benefits. Some times the increase in performance is so marginal it’s simply not
worth the effort.

4.1.1 Critial areas

The first step would be to profile the program and search for critical areas or hot
spots that are most likely to be executed most of the time or many times. Those
are the spots we need to focus our attention on.

The critical areas performance-wise can be deduced rather easily in this case.
Crossover and mutation both happen while reproduction takes place. Reproduction
itself is a for-loop iterating over the entirety of the population – which is typically
rather large for the tsp. At runtime, the algorithm spends most of the time repro-
ducing new generations. Since the population tends to get rather large for the TSP,
this is the first place to go.

4.2 Realisation with OpenMP

For easy comparability, the existing sequential methods were not altered to run in
parallel. Instead, additional methods were added bearing the suffix Parallel. An
option was added to allow the user to choose between sequential and parallel mode
by appending s or p as startup parameter after specifying the problem.

./bin/ega tsp s Starts with TSP in sequential mode

./bin/ega p2 p Power of Two (x2) in parallel mode

4.2.1 The reproduction method

Parallelising the reproduction(. . . )-method of Population was the first approach.
As can be seen in figure 4.1, reproduction is nothing more than one single and, above
all, expensive for-loop iterating over the entire population, randomly picking two
individuals from old_pop, crossing them, and storing the offspring in new_pop.

Parallelising reproduction implicitly parallelises crossover and mutation, too,
since they are called within reproduction meaning each thread reproduces a cer-
tain section of the population, including crossing and mutating that section.

OpenMP is a very powerful framework in that it allows the developer to focus on
the critical areas instead of hassling with the implementation details of threading.
#pragma omp parallel for takes care of the actual act of parallelisation, creat-
ing as many threads as feasible (e.g., one for each logical processor) or instructed,
handing each thread a distinct chunk of the loop to execute.

Listing 4.1: Parallelised reproduction method of class Population

1 #pragma omp parallel for // this is all that’s necessary

2 // to parallelise a for -loop

3 for(int i = 0; i < size; i = i + 2) {

4 spIndividual child1( newPopulation ->genome.at(i) );
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5 spIndividual child2( newPopulation ->genome.at(i + 1) );

6

7 if(i < elites) {

8 // Preserve the best individuals...

9 }

10 else {

11 // Randomly select two mates and cross them...

12 }

13

14 // Do some basic set up for the children

15 // ...

16 }

4.2.2 The crossover method

Parallelising the crossover(. . . )-method without parallelising the outer reproduc-
tion method did not yield any significant performance benefit – in fact the perfor-
mance gain was barely noticeable, lying somewhere around 1-2%.

Listing 4.2: Parallelised crossover method of a permutation individual

1 #pragma omp parallel for // First parallelisation

2 for(int i = 0; i <= xsite; i++) {

3 // transfer cities until xsite is met

4 }

5

6 #pragma omp parallel for // Second parallelisation

7 if(xsite != (length - 1)) {

8 vector <int> remainderPartnerTour;

9 vector <int> remainderThisTour;

10

11 // Iterate over all cities of one crossover mate to mark

12 for(int k = 0; k < length; k++) {

13 bool isPartnerCityUsable = true;

14 bool isThisCityUsable = true;

15

16 #pragma omp parallel for // Third parallelisation

17 for(int l = 0; l <= xsite; l++) {

18 // mark city if already transfered

19 }

20

21 // store city in remainder vector if not marked

22 }

23

24 #pragma omp parallel for // Fourth parallelisation

25 for(int j = xsite + 1, i = 0; j < length; j++, i++) {

26 // transfer remaining cities after the xsite

27 }

28 }
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It is assumed that the overhead of creating and terminating threads in the
crossover(. . . )-method is too costly while providing just a diminuitive acceler-
ation. As can be seen in listing 4.2 four separate parallelisations are necessary to
achieve parallelisation in crossover.

For this reason the first approach of parallelising reproduction was chosen.

4.3 Performance evaluation

Similar to the performance evaluation in chapter 3 section 3.4, st70.tsp was used
to test the performance of the EGA with the following parameters, unless otherwise
noted:

Crossover probability: 0.6

Mutation probability: 0.03

Generations: 100

Population EGA sequential EGA parallel SU
size time best fitness time best fitness factor

1,000 14.170 s 12.08 10.200 s 9.68 1.4
10,000 294.610 s 14.55 53.909 s 11.14 5.5

Mutation: 0.2

1,000 23.302 s 6.69 15.895 s 6.30 1.5
10,000 306.410 s 7.12 59.168 s 6.70 5.2

Crossover: 0.8

1,000 27.940 s 12.42 12.789 s 10.19 2.2
10,000 297.165 s 14.15 55.029 s 11.28 5.4

Generation: 300

1,000 41.790 s 20.21 17.400 s 15.73 2.4
10,000 833.031 s 29.89 135.914 s 25.56 6.1

Table 4.1: Comparing the sequential ega to the parallel version

The same effect as in the previous two performance evaluations can be observed:
For smaller populations combinded with less generations the difference in perfor-
mance diminishes. Thus it is not surprising to see the parallel version being only
moderately faster compared to the sequential version for populations of 1,000 indi-
viduals running over 100 generations.

Though it should be noted that the execution time of the parallel EGA was more
than cut in half when the crossover probability was increased to 80%. The same can
be said for the test run over 300 generations.
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By dividing the execution time of the sequential version through the execution
time of the parallel version we get the factor of speedup (abbreviated SU in table
4.1) achieved by parallelisation.

The factor of speedup for populations of 1,000 and a generation runtime of 100
is around 1.4 and 2, meaning the program runs approximately 40-100% faster on
a parallel machine with 8 cores. According to figure 4.1 this is not quite what we
can expect of a 8 core computer, so it’s a rather weak speedup. A program with a
95% parallel portion may have a speedup up to a maximum of factor 6.0, whereas
the EGA resides within the factor of speedup a program would achieve with only
50% parallel portion. Does this mean the genetic algorithm has only a small parallel
portion?

Looking at the results with a population of 10,000 individuals we find ourselves
at a speedup factor of 5.2 to 6.1 which is pretty as much as can be expect with
the used test configuration. 6.1 is even a little over the maximum possible speedup,
which can be justified by measuring inaccuracy.

Oddly enough, the fitness generally seems to be higher by a small amount for
the sequential version. No explanation was found for this phenomenon, but since
the speedup by far outweights the loss of fitness, this is not a serious issue.

Figure 4.1: Amdahl’s Law showing the maximum possible speedup of parallelisation
(Image from Wikipedia [7])

So, it is true that genetic algorithms do posses intrinsic parallelism providing
the best speedup possible for parallel programs. Although the EGA needs a certain
workload to maximise its speedup benefit by parallelisation, which is not hard to
find considering complex problems like the TSP or other NP-complete problems.

34



Chapter 5

Conclusion

Getting involved with genetic algorithms was an interesting and rewarding endeav-
our. Genetic algorithms can be applied in a broad area of application, ranging from
optimisation problems like the traveling salesman problem as discussed in this work
to artifical intelligence. Over the course of this work the fundamentals of genetic
algorithms have been learnt and applied. First in a simple inflexible approach, then
with a more sophisticated design. Last, it was proven that genetic algorithm posses
a strong intrinsic aptitude for parallelisation.

Parallelisation – especially the feature of parallelisability – is very important in
times when single core processors are at their physical limits. Todays and future
programs have to be designed and developed with multi-core computers in mind to
fully exploit the possibilites of tomorrows personal computers. Even at the time of
this work it is virtually impossible to purchase a computer with only a single core
processor in stores. Furthermore, 8-core processors are barely the peak. It can be
expected that future computers will have several hundred cores or more. As figure
4.1 indicates is the limit expected to lie somewhere around 4096 cores, which is still
far ahead from a present-day perspective. But as software development often takes
several years until completion, we have to design and develop the software not for
todays computers but for tomorrows.

Considering the complexity of threaded programming coupled with the com-
plexity of the paradigm of parallelism it is likely that parallelisation frameworks will
prevail in the future, for it is unlikely a way will be found to reduce the complexity
of the paradigm itself. All that can be done is to reduce the complexity of “man-
ually” applying threading by leaving the implementation details for frameworks to
take care of. This way developers can focus on the difficulties of thinking parallel –
which is not usual for humans that are sequential by nature.
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Appendix B

List of Abbreviations

D

DNA – Deoxyribonucleic acid

E

EGA – Enhanced Genetic Algorithm

G

GA – Genetic Algorithm

R

RNG – Random Number Generator

S

SGA – Simple Genetic Algorithm
SU – Speedup

T

TSP – Traveling Salesman Problem

X

xsite – Crossover site
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